Issues in Development of Artificial Neural Network-Based Control Chart Pattern Recognition Schemes
نویسنده
چکیده
Control chart pattern recognition has become an active area of research since late 1980s. Much progress has been made, in which there are trends to heighten the performance of artificial neural network (ANN)-based control chart pattern recognition schemes through feature-based and wavelet-denoise input representation techniques, and through modular and integrated recognizer designs. There is also a trend to enhance it’s capability for monitoring and diagnosing multivariate process shifts. However, there is a lack of literature providing a critical review on the issues associated to such advances. The purpose of this paper is to highlight research direction, as well as to present a summary of some updated issues in the development of ANN-based control chart pattern recognition schemes as being addressed by the frontiers in this area. The issues highlighted in this paper are highly related to input data and process patterns, input representation, recognizer design and training, and multivariate process monitoring and diagnosis. Such issues could be useful for new researchers as a starting point to facilitate further improvement in this
منابع مشابه
Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature
Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...
متن کاملA New Statistical Approach for Recognizing and Classifying Patterns of Control Charts (RESEARCH NOTE)
Control chart pattern (CCP) recognition techniques are widely used to identify the potential process problems in modern industries. Recently, artificial neural network (ANN) –based techniques are very popular to recognize CCPs. However, finding the suitable architecture of an ANN-based CCP recognizer and its training process are time consuming and tedious. In addition, because of the black box ...
متن کاملUnsupervised adaptive resonance theory neural networks for control chart pattern recognition
This paper describes the use of unsupervised adaptive resonance theory ART2 neural networks for recognizing patterns in statistical process control charts. To improve the classi® cation accuracy, three schemes are proposed. The ® rst scheme involves using information on changes between consecutive points in a pattern. The second scheme modi® es the ART2 vigilance parameter during training. The ...
متن کاملAn improved scheme for online recognition of control chart patterns
This paper proposes two alternative schemes for the online recognition of control chart patterns (CCPs), namely: 1 a scheme based on direct continuous recognition 2 a scheme based on ‘recognition only when necessary’. The study focuses on recognition of six CCPs plotted on the Shewhart X-bar chart, namely, random, shift-up, shift down, trend-up, trend-down and cyclic. The artificial neural netw...
متن کاملA Review of Artificial Neural Network Applications in Control Chart Pattern Recognition
On-line automated process analysis is an important area of research since it allows the interfacing of process control with computer integrated manufacturing (CIM) techniques. The inflexibility and high computational costs of traditional SPC pattern recognition methodologies have led researchers to investigate artificial neural network applications to control chart pattern recognition. This pap...
متن کامل